If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 12x2 + -26x + 989 = 0 Reorder the terms: 989 + -26x + 12x2 = 0 Solving 989 + -26x + 12x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 12 the coefficient of the squared term: Divide each side by '12'. 82.41666667 + -2.166666667x + x2 = 0 Move the constant term to the right: Add '-82.41666667' to each side of the equation. 82.41666667 + -2.166666667x + -82.41666667 + x2 = 0 + -82.41666667 Reorder the terms: 82.41666667 + -82.41666667 + -2.166666667x + x2 = 0 + -82.41666667 Combine like terms: 82.41666667 + -82.41666667 = 0.00000000 0.00000000 + -2.166666667x + x2 = 0 + -82.41666667 -2.166666667x + x2 = 0 + -82.41666667 Combine like terms: 0 + -82.41666667 = -82.41666667 -2.166666667x + x2 = -82.41666667 The x term is -2.166666667x. Take half its coefficient (-1.083333334). Square it (1.173611113) and add it to both sides. Add '1.173611113' to each side of the equation. -2.166666667x + 1.173611113 + x2 = -82.41666667 + 1.173611113 Reorder the terms: 1.173611113 + -2.166666667x + x2 = -82.41666667 + 1.173611113 Combine like terms: -82.41666667 + 1.173611113 = -81.243055557 1.173611113 + -2.166666667x + x2 = -81.243055557 Factor a perfect square on the left side: (x + -1.083333334)(x + -1.083333334) = -81.243055557 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 12x=-3y+12 | | Y-3=1(x-1) | | 5e=-35 | | 2y-8=36 | | 10h-3(5+2h)=13 | | 9u^2(54ux^2)^(1/2)-x(6u^5)^(1/2) | | 3x^3*y^-1*z-3/x^-4*y^0*z^0= | | f(x)=4sin(2x+10)+5 | | 2.7c+.37k=1.1 | | x-39=2x | | -x-8=2x+1 | | x^3-xy^2+y^3=5 | | √25/√49 | | 5-4x/2-3x | | 15.00-92.50= | | 92.50-15.00= | | -35xy^6over-25x^8y^3= | | y=1ox+80 | | c(c-14)=0 | | (5x+9)(x-10)=-17x-106 | | 4(5x-9)+6=23 | | -3(3p+2)-2(1-8p)=3(4+2p) | | 5x+11=4x-2 | | (4m^2)(3m^-1)^2/(19n^3)(4n^-2) | | ((4m^2)(3m^-1)^2)/(19n^3)(4n^-2) | | -s=-2s+8 | | 5w+6=2w | | 0=4n+6 | | 2(x+3)+4=4(x-2) | | tan(3x)=-sqrt(3) | | X(11/8) | | ×(11/8) |